Communications to the Editor

ISOLATION AND STRUCTURE OF A NEW ANSAMYCIN ANTIBIOTIC KANGLEMYCIN A FROM A NOCARDIA

Sir:

During the course of a screening for new antibiotics from *Nocardia*, *Nocardia mediterranei* var. *kanglensis* 1747-64 was found to produce a new ansamycin antibiotic, kanglemycin A which is active against Gram-positive bacteria. In this paper, we wish to report the isolation and structure of the antibiotic.

The stock culture of a strain, *Nocardia mediterranei* var. *kanglensis* 1747-64¹⁾ was inoculated into a seed medium (glucose 2.5%, yeast meal 0.5%, KCl 0.25%, soybean meal 0.5%, K₂HPO₄ 0.02%, (NH₄)₂SO₄ 0.5%, MgSO₄ 0.02% and CaCO₃ 0.5%) in a 20-liter jar fermentor and incubated at 28°C for 48 hours. The seed culture (10 liters) was transferred to 200 liters of a production medium (glucose 3%, yeast meal 1%, peanut meal 0.5%, peptone 0.2%, CaCO₃ 0.1%, pH 7.0) in a 300-liter fermentor and the fermentation was carried out at 28°C for 96 hours.

The fermentation broth (200 liters) of kanglemycin producing strain was cooled at 5° C and filtered. The filtrate was extracted with ethyl acetate (70 liters) at pH 2. The extract was concentrated to a small volume under reduced pressure. After washing the concentrate with a phosphate buffer (pH 7.3), it was evaporated in an atmosphere of N₂ gas under reduced pressure to give a syrup. This was then chromatographed on silica gel and developed with benzene - methanol (100:4). The active fractions were collected and washed with acidic water (pH $2 \sim 3$). Kanglemycin A in the benzene layer was extracted with a solution of 5% NaHCO₃ and then re-extracted with ethyl acetate from the aqueous solution at pH 7. After evaporation of the extract, the resulting crude material was dissolved in methanol. After standing for several hours, kanglemycin A (1 g) was obtained as orange rod crystals, mp 156°C (dec), $[\alpha]_{D}^{25} + 315.4^{\circ}$ (c 0.2, MeOH). The molecular formula, C50H63NO19 for kanglemycin A was deduced from its elemental analysis (C 60.63, H 6.53, N 1.46), electron impact (EI)and field desorption (FD)-MS data (m/z 981)(M⁺)) and ¹³C NMR spectral data. The IR spectrum (KBr) exhibited characteristic bands at 3450 cm⁻¹ (NH/OH), 1783 cm⁻¹ (ester CO), 1640 cm⁻¹ (NHCO) and 1700 and 1618 cm⁻¹ (naphthoquinone CO), as shown in Fig. 1. The UV and visual absorption maxima $(\lambda_{max}^{MeOH} nm)$ (E^{1%}_{1cm}), 232 (225), 275 (178), 304 (105) and 397 (38)) of kanglemycin A showed a close similarity absorption to that of rifamycin S² indicating that it possesses the same chromophore.

Kanglemycin A is an acidic lipophilic compound. It is soluble in organic solvents such as acetone, ethyl acetate and chloroform, slightly

Kanglemycin A

Fig. 2. The molecular structure of kanglemycin A.

soluble in methanol and ethanol, and insoluble in petroleum ether. The Rf values on silica gel TLC are follows: 0.58 (CHCl₃ - MeOH, 9:1), 0.37 (MeOH - petroleum ether - benzene, 4:6.5:10).

The structure of kanglemycin A was determined by X-ray crystallographic analysis³⁾ of its single crystal. The crystal of kanglemycin A $(C_{50}H_{03}NO_{10} \cdot MeOH)$ belongs to triclinic, space group P1, unit cell: a=12.760(3), b=10.287(2),c=9.926(2) Å, $\alpha=88.39(2)^{\circ}, \beta=78.64(2)^{\circ}, \gamma=$ 89.14(2)°. RANTAN direct method⁴⁾ was used for solving the structure. The final discrepancy factor is R=0.0689, after coordinates and tem-

perature factors were refined with full matrix least squares. The molecular structure of kanglemycin A is shown in Fig. 2. The structural skeleton of kanglemycin A consists of four parts: A naphthalenoid nucleus containing a 5-membered ring, a 17-membered ansa chain, monoethyl ester of 2,2-dimethyl succinic acid and β -O-3,4-O,O'-methylene digitoxose on the ansa chain. The ¹³C NMR spectrum (25 MHz) of the antibiotic shows well separated signals and supports the structure deduced from the X-ray analysis, as shown in Fig. 3. As shown in Table 1, the ¹⁸C chemical shift assignments of kanglemycin A were made essentially by ¹³C NMR spectral comparison with those of rifamycin S,5) digitoxose and 2,2-dimethyl succinic acid. It should be noted that kanglemycin A is a novel ansamycin that possesses two structural moieties, dimethyl succinic acid and digitoxose at C-20 and C-27, respectively, on the ansa chain differing from other ansamycin antibiotics. The antibiotic shows a potent antimicrobial activity against Gram-positive bacteria, especially Streptococcus sanguis No. 10 (MIC $0.1 \sim 0.2 \ \mu g/ml$), Streptococcus pyogenes A 12 (0.003~0.006) and Streptococcus pneumoniae (0.05). Details of the taxonomy of the producing strain, the fermentation and the

Fig. 3. The ¹³C NMR spectrum of kanglemycin A (25 MHz, CDCl₃).

Table 1. ¹³C Chemical shift assignments of kanglemycin A (25 MHz, CDCl₃).

Carbon No.	δ_{C}^{a}	Multiplicity	Carbon No.	$\delta_{\rm C}{}^{\rm a}$	Multiplicity
C-1	184.7	S	C-26	36.5	d
C-2	110.5	s	C-27	80.4	d
C-3	116.9	d	C-28	112.7	d
C-4	183.5	S	C-29	145.5	d
C-5	110.8	S	C-30	20.6	q
C-6	171.9	S	C-31	75.3	d
C-7	116.1	S	C-32	18.4	q
C-8	166.5	s	C-33	175.6	S
C-9	131.9	S	C-34	40.4	s
C-10	139.6	S	C-35	43.1	t
C-11	192.5	S	C-36	171.1	S
C-12	108.8	S	C-37	24.9	q
C-13	7.5	q	C-38	25.6	q
C-14	23.0	q	C-39	9.1	q
C-15	170.4	S	C-40	12.8	q
C-16	130.8	S	C-41	172.9	s
C-17	133.0	d	C-42	21.2	q
C-18	127.8	d	C-43	12.6	q
C-19	129.6	d	C-44	96.4	d
C-20	51.8	d	C-45	32.8	t
C-21	73.9	d	C-46	69.8	d
C-22	33.5	d	C-47	94.5	t
C-23	73.7	đ	C-48	61.4	đ
C-24	36.5	d	C-49	68.5	đ
C-25	78.3	đ	C-50	19.3	q

^a Chemical shifts in values (ppm down-field from internal TMS in CDCl₃).

biological property of kanglemycin A will be reported elsewhere.

A. NAKAGAWA, The Kitasato Institute, and Kitasato University.

Acknowledgment

The authors gratefully acknowledge useful discussion and guidances with Prof. S. ŌMURA and Dr. Nan-Jin Wang Yuan Fu Gui-Hua Yan Guang-Hong Bao[†]

Chang-Fu Xu[†] Cun-Heng He[†]

Institute of Medicinal Biotechnology, C.A.M.S. Tiantan, Beijing, P.R. China [†]Institute of Basic Medical Sciences, C.A.M.S. Beijing, P.R. China

(Received September 14, 1987)

References

1) Institute of Antibiotics (*Ed.*): The Proceeding of Screening for New Antibiotics. pp. 242~248,

Beijing, 1973

- CASEY, M. L. & H. W. WHITLOCK: Determination of the solution conformation of rifamycin S and derivatives by nuclear magnetic resonance. J. Am. Chem. Soc. 97: 6231~6236, 1975
- 3) BAO, G.-H.; C.-H. HE, C.-F. XU, N.-J. WANG, S.-T. MU, J.-X. YAO & Q.-T. ZHENG: Structure determination of kanglemycin A by X-ray diffraction method. Sci. Sin. Ser. B2 (China) 1987: 168~175, 1987
- YAO, J.-X.: Structure determination of kanglemycin A by X-ray analysis. Acta Crystal (China) A37: 642~644, 1981
- MARTINELLI, E.; R. J. WHITE & G. G. GALLO: Carbon-13 NMR spectra of rifamycin S. Tetrahedron 29: 3441 ~ 3448, 1973